Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Biol Res ; 55(1): 5, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115050

RESUMEN

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Asunto(s)
Electroacupuntura , Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Microglía/fisiología , Manejo del Dolor , Animales , Inflamación/inducido químicamente , Inflamación/terapia , Ratones , Neuronas , Dolor/inducido químicamente
2.
Nutr Neurosci ; 25(1): 180-191, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32124682

RESUMEN

Parkinson's disease (PD) is characterized by dysfunction of the nigrostriatal system, loss of dopamine neurons and intracellular aggregation of α-synuclein. Recently, both clinical and experimental studies have reported that neuroinflammation and oxidative stress markedly contribute to the etiology of PD. Current clinical pharmacotherapies only temporarily relieve the symptoms of PD, accompanied by many side effects. Hence, searching for natural anti-inflammatory, anti-oxidative and neuroprotective agents has received great attention. Polyunsaturated fatty acids (PUFAs), especially omega (n)-3, are essential lipid nutrients in the human diet and important components of cell membranes. Together by competing with the production of n-6 PUFAs, the precursors of inflammatory mediators, n-3 PUFAs can inhibit microglial activity and neuroinflammation, protect astrocyte function to produce neurotrophins, thereby normalizing neurotransmission and improving neurodegeneration. Thus, with regard to the hypotheses of PD, our and other's recent studies have demonstrated that n-3 PUFAs may improve PD by inhibiting proinflammatory cytokine release, promoting neurotrophic factor expression, recovering mitochondrial function and membrane fluidity, decreasing the levels of oxidant production, maintaining α-synuclein proteostasis, calcium homeostasis, axonal transport, and reducing endoplasmic reticulum stress. This review mainly introduces and analyzes the effect of n-3 PUFA treatments on PD-related behavioral and neuropathological abnormalities in clinical patients and different cellular and animal models of PD. Finally, the limitations and future work in n-3 PUFAs anti-PD area are discussed.


Asunto(s)
Ácidos Grasos Omega-3/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Antiinflamatorios , Antioxidantes , Astrocitos/fisiología , Humanos , Microglía/efectos de los fármacos , Microglía/fisiología , Factores de Crecimiento Nervioso/biosíntesis , Enfermedades Neuroinflamatorias/complicaciones , Enfermedades Neuroinflamatorias/prevención & control , Fármacos Neuroprotectores , Estrés Oxidativo , Enfermedad de Parkinson/etiología , alfa-Sinucleína/metabolismo
3.
Biol. Res ; 55: 5-5, 2022. graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1383910

RESUMEN

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and down-regulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Asunto(s)
Animales , Ratones , Electroacupuntura , Microglía/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Manejo del Dolor , Dolor/inducido químicamente , Inflamación/inducido químicamente , Inflamación/terapia , Neuronas
4.
Food Funct ; 12(19): 9261-9272, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606526

RESUMEN

Isorhamnetin (ISO), a flavonoid compound isolated from sea-buckthorn (Hippophae rhamnoides L.) fruit, has anti-inflammatory effects. However, the effects of ISO on neuroinflammation and cognitive function are still unclear. The purpose of this study was to evaluate the protective effect of ISO on cognitive impairment in obese mice induced by a high-fat and high fructose diet (HFFD). It has been found that oral administration of ISO (0.03% w/w and 0.06% w/w) for 14 weeks significantly reduced the body weight, food intake, liver weight, liver lipid level, and serum lipid level of HFFD-fed mice. ISO can also significantly prevent HFFD-induced neuronal working, spatial, and long-term memory impairment. Notably, the ISO treatment activated the CREB/BDNF pathway and increased neurotrophic factors in the brains of mice. Furthermore, ISO inhibited HFFD-induced microglial overactivation and down-regulated inflammatory cytokines in both serum and the brain. It can also inhibit the expression of p-JNK, p-p38, and p-NFκB protein in the mouse brain. In conclusion, these results indicated that ISO mitigated HFFD-induced cognitive impairments by inhibiting the MAPK and NFκB signaling pathways, suggesting that ISO might be a plausible nutritional intervention for metabolic syndrome-related cognitive complications.


Asunto(s)
Disfunción Cognitiva/prevención & control , Dieta Alta en Grasa/efectos adversos , Azúcares de la Dieta/administración & dosificación , Suplementos Dietéticos , Enfermedades Neuroinflamatorias/prevención & control , Quercetina/análogos & derivados , Transducción de Señal , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Azúcares de la Dieta/efectos adversos , Fructosa/administración & dosificación , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microglía/fisiología , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Quercetina/administración & dosificación , Aumento de Peso
5.
Eur J Pharmacol ; 910: 174483, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34481878

RESUMEN

The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Enfermedades del Sistema Nervioso Central/fisiopatología , Sistema Nervioso Central/fisiología , Acoplamiento Neurovascular/fisiología , Pez Cebra/fisiología , Animales , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Sistema Nervioso Central/irrigación sanguínea , Sistema Nervioso Central/efectos de los fármacos , Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Microglía/efectos de los fármacos , Microglía/fisiología , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/fisiología , Acoplamiento Neurovascular/efectos de los fármacos
6.
J Neuroendocrinol ; 33(8): e12999, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216402

RESUMEN

Although polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility worldwide, the aetiology of the disorder remains poorly defined. Animal-based evidence highlights the brain as a prime suspect in both the development and maintenance of PCOS. Prenatally androgenised (PNA) models of PCOS exhibit excessive GABAergic wiring associated with PCOS-like reproductive deficits in adulthood, with aberrant brain wiring detected as early as postnatal day (P) 25, prior to disease onset, in the PNA mouse. The mechanisms underlying this aberrant brain wiring remain unknown. Microglia, the immune cells of the brain, are regulators of neuronal wiring across development, mediating both the formation and removal of neuronal inputs. Here, we tested the hypothesis that microglia play a role in the excessive GABAergic wiring that leads to PCOS-like features in the PNA brain. Using specific immunolabelling, microglia number and morphology associated with activation states were analysed in PNA and vehicle-treated controls across developmental timepoints, including embryonic day 17.5, P0, P25 and P60 (n = 7-14 per group), and in two regions of the hypothalamus implicated in fertility regulation. At P0, fewer amoeboid microglia were observed in the rostral preoptic area (rPOA) of PNA mice. However, the greatest changes were observed at P25, with PNA mice exhibiting fewer total microglia, and specifically fewer "sculpting" microglia, in the rPOA. Based on these findings, we assessed microglia-mediated refinement of GABAergic synaptic terminals at two developmental stages of peak synaptic refinement: P7 and P15 (n = 7 per group). PNA mice showed a reduction in the uptake of GABAergic synaptic material at P15. These findings reveal time-specific changes in the microglia population and refinement of GABAergic inputs in a mouse model of PCOS driven by prenatal androgen excess and suggest a role for microglia in shaping the atypical brain wiring associated with the development of PCOS features.


Asunto(s)
Encéfalo/patología , Microglía/fisiología , Síndrome del Ovario Poliquístico/psicología , Animales , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Síndrome del Ovario Poliquístico/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/psicología
7.
Exp Anim ; 70(4): 469-478, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34108361

RESUMEN

Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke with high morbidity and mortality. The previous study has confirmed the therapeutic effect of Baihui (DU20)-penetrating-Qubin (GB7) acupuncture on ICH, while the related mechanism is left to be revealed. The aim of this study was to investigate the relevant mechanisms. ICH rat models were established utilizing the autologous blood injection method and the beneficial effect was found after DU20-penetrating-GB7 acupuncture along with decreased miR-34a-5p levels in the perihemorrhagic penumbra. Inversely, upregulating miR-34a-5p expression inhibited microglia M2 polarization while accelerated M1 polarization through targeting Krüppel-like factor 4 (Klf4), and thereby diminished the protective effect of DU20-penetrating-GB7 acupuncture on ICH. The results suggested the therapeutic effect of DU20-penetrating-GB7 acupuncture on ICH might be attributed to its modulation on microglia polarization through miR-34a-5p/Klf4 signaling.


Asunto(s)
Terapia por Acupuntura , Polaridad Celular/genética , Hemorragia Cerebral/genética , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/genética , Microglía/fisiología , Animales , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Ratas , Transducción de Señal
8.
Front Immunol ; 12: 626884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897685

RESUMEN

Increased afferent input resulting from painful injury augments the activity of central nociceptive circuits via both neuron-neuron and neuron-glia interactions. Microglia, resident immune cells of the central nervous system (CNS), play a crucial role in the pathogenesis of chronic pain. This study provides a framework for understanding how peripheral joint injury signals the CNS to engage spinal microglial responses. During the first week of monosodium iodoacetate (MIA)-induced knee joint injury in male rats, inflammatory and neuropathic pain were characterized by increased firing of peripheral joint afferents. This increased peripheral afferent activity was accompanied by increased Iba1 immunoreactivity within the spinal dorsal horn indicating microglial activation. Pharmacological silencing of C and A afferents with co-injections of QX-314 and bupivacaine, capsaicin, or flagellin prevented the development of mechanical allodynia and spinal microglial activity after MIA injection. Elevated levels of ATP in the cerebrospinal fluid (CSF) and increased expression of the ATP transporter vesicular nucleotide transporter (VNUT) in the ipsilateral spinal dorsal horn were also observed after MIA injections. Selective silencing of primary joint afferents subsequently inhibited ATP release into the CSF. Furthermore, increased spinal microglial reactivity, and alleviation of MIA-induced arthralgia with co-administration of QX-314 with bupivacaine were recapitulated in female rats. Our results demonstrate that early peripheral joint injury activates joint nociceptors, which triggers a central spinal microglial response. Elevation of ATP in the CSF, and spinal expression of VNUT suggest ATP signaling may modulate communication between sensory neurons and spinal microglia at 2 weeks of joint degeneration.


Asunto(s)
Artritis Experimental/fisiopatología , Microglía/fisiología , Neuronas Aferentes/fisiología , Médula Espinal/fisiopatología , Adenosina Trifosfato/fisiología , Animales , Artralgia/terapia , Modelos Animales de Enfermedad , Femenino , Hiperalgesia/fisiopatología , Ácido Yodoacético/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
9.
Int Immunopharmacol ; 93: 107422, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33548579

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline in vascular dementia (VaD). We have previously shown that diabetes mellitus (DM) synergistically promotes CCH-induced cognitive dysfunction via exacerbating neuroinflammation. Furthermore, curcumin has been shown to exhibit anti-inflammatory and neuroprotective activities. However, the effects of curcumin on CCH-induced cognitive impairments in DM have remained unknown. METHODS: Rats were fed with a high-fat diet (HFD) and injected with low-dose streptozotocin (STZ), followed by bilateral common carotid artery occlusion (BCCAO), to model DM and CCH in vivo. After BCCAO, curcumin (50 mg/kg) was administered intraperitoneally every two days for eight weeks to evaluate its therapeutic effects. Additionally, mouse BV2 microglial cells were exposed to hypoxia and high glucose to model CCH and DM pathologies in vitro. RESULTS: Curcumin treatment significantly improved DM/CCH-induced cognitive deficits and attenuated neuronal cell death. Molecular analysis revealed that curcumin exerted protective effects via suppressing neuroinflammation induced by microglial activation, regulating the triggering receptor expressed on myeloid cells 2 (TREM2)/toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway, alleviating apoptosis, and reducing nod-like receptor protein 3 (NLRP3)-dependent pyroptosis. CONCLUSIONS: Taken together, our findings suggest that curcumin represents a promising therapy for DM/CCH-induced cognitive impairments.


Asunto(s)
Antiinflamatorios/uso terapéutico , Disfunción Cognitiva/prevención & control , Curcumina/uso terapéutico , Diabetes Mellitus/terapia , Hipoxia Encefálica/terapia , Microglía/fisiología , Animales , Apoptosis , Células Cultivadas , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Humanos , Hipoxia Encefálica/complicaciones , Masculino , Ratones , Inflamación Neurogénica , Piroptosis , Ratas , Ratas Sprague-Dawley
10.
Cell Rep ; 34(1): 108587, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406432

RESUMEN

Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Ependimogliales/fisiología , Hipotálamo/embriología , Hipotálamo/fisiología , Microglía/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Animales , Encéfalo/embriología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata , Ratones , Ratones Transgénicos , Imagen Óptica/métodos , Tirosina Quinasa del Receptor Axl
11.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478055

RESUMEN

We have previously reported that phytochemicals from Abies holophylla exhibit anti-inflammatory and neuroprotective effects by decreasing nitrite production and increasing nerve growth factor production. However, the exact mechanism underscoring these effects has not been revealed. In the present study, we aimed to explore the underlying anti-inflammatory mechanisms of A. holophylla and its phytochemicals. We studied various solvent fractions of A. holophylla and found the chloroform and hexane sub-fractions showed the most significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-activated murine microglia. Concomitantly, the terpenoids isolated from chloroform and hexane fractions showed similar anti-neuroinflammatory effects with significant inhibition of NO and reactive oxygen species production, and decreased protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase. Interestingly, these terpenoids inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), which further inhibited the production of pro-inflammatory mediators, including prostaglandin E2, tumor necrosis factor, and interleukins (IL-6 and IL-1ß), with a potency greater than that of the well-known iNOS inhibitor NG-mono-methyl-L-arginine (L-NMMA). These results suggest that the chloroform- and hexane-soluble fraction mediated the mitogen-activated protein kinase (MAPK) inhibition, in particular the JNK pathway, thereby lowering the inflammatory cascades in LPS-activated murine microglia. Thus, our study suggests that the chloroform and hexane fractions of A. holophylla and their terpenoids may be potential drug candidates for drug discovery against LPS-induced neuroinflammation and neuroinflammatory-related neurodegeneration.


Asunto(s)
Abies/química , Inflamación/prevención & control , Microglía/efectos de los fármacos , Terpenos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Microglía/fisiología , Neuritis/inducido químicamente , Neuritis/metabolismo , Neuritis/prevención & control , Neuroinmunomodulación/efectos de los fármacos , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Terpenos/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
12.
Neurobiol Aging ; 99: 19-27, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422891

RESUMEN

Loss of physiological microglial function may increase the propagation of neurodegenerative diseases. Cellular senescence is a hallmark of aging; thus, we hypothesized age could be a cause of dystrophic microglia. Stereological counts were performed for total microglia, 2 microglia morphologies (hypertrophic and dystrophic) across the human lifespan. An age-associated increase in the number of dystrophic microglia was found in the hippocampus and frontal cortex. However, the increase in dystrophic microglia was proportional to the age-related increase in the total number of microglia. Thus, aging alone does not explain the presence of dystrophic microglia. We next tested if dystrophic microglia could be a disease-associated microglia morphology. Compared with controls, the number of dystrophic microglia was greater in cases with either Alzheimer's disease, dementia with Lewy bodies, or limbic-predominant age-related TDP-43 encephalopathy. These results demonstrate that microglia dystrophy, and not hypertrophic microglia, are the disease-associated microglia morphology. Finally, we found strong evidence for iron homeostasis changes in dystrophic microglia, providing a possible molecular mechanism driving the degeneration of microglia in neurodegenerative disease.


Asunto(s)
Envejecimiento Saludable/patología , Microglía/patología , Microglía/fisiología , Enfermedades Neurodegenerativas/patología , Senescencia Celular , Femenino , Lóbulo Frontal/citología , Lóbulo Frontal/patología , Hipocampo/citología , Hipocampo/patología , Homeostasis , Humanos , Hipertrofia , Hierro/metabolismo , Masculino , Microglía/metabolismo , Enfermedades Neurodegenerativas/etiología
13.
Clin Rev Allergy Immunol ; 60(2): 147-163, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32495237

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.


Asunto(s)
Terapia Biológica/tendencias , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Microglía/fisiología , Esclerosis Múltiple/metabolismo , Animales , Autoinmunidad , Humanos , Inflamación/inmunología , Inflamación/terapia , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia
14.
J Ethnopharmacol ; 264: 113246, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32781257

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cyperus rotundus L. (Cyperaceae) is a widespread herbal in China and widely used in Traditional Chinese Medicine for multiple effects such as anti-arthritic, anti-genotoxic, anti-mutagenic, anti-bacterial effects, and analgesic. α-Cyperone is an active compound in Cyperus rotundus and has analgesic effects, but the exact molecular mechanisms require further investigations. MATERIALS AND METHODS: Tumor-derived DNA isolated from Lewis cell lines was transfected into microglia, and analyzed for stimulator of interferon genes (STING) effects. The downstream protein, such as interferon regulatory factor 3 (IRF3) and p65 nuclear factor-κB (NF-κB) were treated with STING siRNA and 5,6-dimethyllxanthenone-4-acetic acid (DMXAA) in microglia. The α-Cyperone effect on microglia was also investigated. RESULTS: Tumor-derived DNA activate microglia by upregulation of STING and downstream proteins. STING siRNA was reduced to its downstream expression and neuroinflammation inhibition was caused by tumor-derived DNA. However, DMXAA reversed the STING siRNA effect and increased neuroinflammation. α-Cyperone takes inhibitory effects on tumor-derived DNA that trigger microglia by STING pathway. CONCLUSIONS: α-Cyperone inhibition by tumor-derived DNA activated microglial to neuroinflammation in STING signaling pathway.


Asunto(s)
ADN de Neoplasias/antagonistas & inhibidores , ADN de Neoplasias/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Microglía/efectos de los fármacos , Naftalenos/farmacología , Animales , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/genética , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Ratones , Microglía/fisiología , Naftalenos/uso terapéutico
15.
Neuroreport ; 31(10): 697-701, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32427802

RESUMEN

Besides degradation, lysosomes can also carry molecules for secretion out of the cell, such as ATP and cytokines, during unconventional secretion. Phosphatidylinositols and their metabolizing enzymes play important roles in the sorting and trafficking of lysosomal materials through the trans-Golgi network. The present study reveals a new function of phosphatidylinositol kinase-III alpha in the 'kiss-and-run' fusion of lysosomes at the plasma membrane to release ATP from microglia.


Asunto(s)
Exocitosis , Lisosomas/fisiología , Microglía/fisiología , Fosfatidilinositol 3-Quinasa/fisiología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ratones Endogámicos C57BL
16.
Neuroreport ; 31(8): 605-612, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32301816

RESUMEN

Subarachnoid hemorrhage (SAH) is a clinically common, acute, critical cerebrovascular disease associated with high mortality. Here, we investigated the effects of electroacupuncture on early brain injury after SAH. We successfully established a Sprague-Dawley rat model of the SAH model, and randomly divided the rats into four groups: sham-operated group, SAH group, positive control group, and electroacupuncture group. Electroacupuncture effectively decreased the number of transferase UTP nick end labeling-positive cells and extent of DNA fragmentation compared with the control, indicating a decrease in apoptosis. Moreover, electroacupuncture decreased the expression of proteins involved in the poly-ADP ribose polymerase-1/apoptosis-inducing factor (PARP-1/AIF) pathway in vivo, and the difference was statistically significant (P < 0.05). Treatment with electroacupuncture resulted in a significant improvement in neurological function. It inhibited the increase in blood-brain barrier permeability by regulating the protein expression of matrix metalloproteinase-9, occludin, and claudin-5. Additionally, electroacupuncture limited the development of cerebral edema and microglial activation in early brain injury after SAH. In conclusion, electroacupuncture can ameliorate early brain injury after SAH, and this may occur via inhibition of the PARP-1/AIF pathway.


Asunto(s)
Lesiones Encefálicas/prevención & control , Lesiones Encefálicas/fisiopatología , Electroacupuntura , Transducción de Señal , Hemorragia Subaracnoidea/complicaciones , Animales , Apoptosis , Factor Inductor de la Apoptosis/metabolismo , Barrera Hematoencefálica/fisiopatología , Lesiones Encefálicas/metabolismo , Modelos Animales de Enfermedad , Microglía/fisiología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratas Sprague-Dawley
17.
J Integr Neurosci ; 19(1): 21-29, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259883

RESUMEN

The neuroprotective role of Fructus Broussonetiae in a model of chronic cerebral hypoperfusion with cognitive decline was focused on neural plasticity and microglia/macrophage polarization. Chronic cerebral hypoperfusion was induced by bilateral common carotid artery ligation. Fructus Broussonetiae shortened escape latency and added the number of platform crossings of rats, up-regulated the expression of synaptophysin in the gray matter and increased myelin basic protein expression in the white matter. Further mechanistic experiments were conducted to examine microglia activation and M1/M2 polarization. It was shown that Fructus Broussonetiae reduced the activation of microglia revealed by decreased expression of ionized calcium-binding adapter molecule-1, inhibited M1 polarization of microglia and improved microglial M2 polarization shown by down-regulated the expression of inducible nitric oxide synthase and Fc fragment of IgG receptor IIIa and up-regulated the expression of arginase-1. In conclusion, the Chinese herb Fructus Broussonetiae can improve cognitive function following chronic cerebral hypoperfusion by down-regulating the activation of microglia, inhibiting microglial M1 polarization, and improving neural plasticity.


Asunto(s)
Encéfalo/efectos de los fármacos , Broussonetia , Trastornos Cerebrovasculares/complicaciones , Disfunción Cognitiva/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Memoria Espacial/efectos de los fármacos , Animales , Encéfalo/fisiopatología , Trastornos Cerebrovasculares/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Microglía/fisiología , Ratas Sprague-Dawley
18.
Pak J Pharm Sci ; 33(1(Special)): 403-408, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32173634

RESUMEN

Inflammatory response that occur post-ischemia is a serious problem in the treatment of ischemic brain disease. MicroRNA-155 is a brain-specific or brain-enriched miRNA, which mediates inflammatory reactions in cerebral ischemic tissue by regulating inflammatory signal and the expression level of SOCS1. The present study was aimed to assess the effect of GuaLou GuiZhi Decoction (GLGZD) on miR-155 expression in activated microglia following inflammation and further explore the role of GLGZD on expression of the inflammation-related gene. BV2 cells were used to simulated by LPS to make the inflammatory model. Expression level of miR-155 was detected by Real-Time PCR. BV2 cells after simulated by LPS were then transfected with miR-155 mimic and its negative controls. Cytokines release were measured by corresponding purchased ELISA kits, respectively. Then target protein expression of miR-155 were detected by western blotting assay. After miRNA over expression transfections, expressions of inflammation-related factors, SOCS-1 and SAMD in BV2 cells after activation were measured by Western blot assay. Results showed that in BV2 cells after simulated by LPS, miR-155 was upregulated. The elevated miR-155 expression enhanced the inflammatory cytokine release. miR-155 directly target and negatively regulated SOCS-1 and SMAD-1 expression. Over expression of SOCS-1 and SMAD reduced inflammatory action that was enhanced by miR-155 mimic transfection. miR-155 was positively related with activation of NF-Ï°B signal pathways via SOCS-1 and SMAD. In conclusion, GuaLou GuiZhi Decoction (GLGZD) might exert its anti-inflammatory action by inhibiting the expression of miR-155, indicating that miR-155 may be used as a treatment target in clinical treatment with GuaLou GuiZhi Decoction (GLGZD) in ischemic brain.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Lipopolisacáridos/farmacología , MicroARNs/fisiología , Microglía/efectos de los fármacos , Animales , Isquemia Encefálica/tratamiento farmacológico , Células Cultivadas , Citocinas/biosíntesis , Ratones , MicroARNs/antagonistas & inhibidores , Microglía/fisiología , Proteína Smad1/antagonistas & inhibidores , Proteína 1 Supresora de la Señalización de Citocinas/antagonistas & inhibidores
19.
J Zhejiang Univ Sci B ; 21(3): 204-217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133798

RESUMEN

Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.


Asunto(s)
Microglía/fisiología , Morfina/farmacología , Neuralgia/etiología , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Tolerancia a Medicamentos , Humanos , Hipoglucemiantes/farmacología , MicroARNs/fisiología , Microglía/efectos de los fármacos , Minociclina/farmacología , Neuralgia/tratamiento farmacológico , Extractos Vegetales/farmacología , Transducción de Señal/fisiología
20.
J Chin Med Assoc ; 83(3): 255-265, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32134862

RESUMEN

BACKGROUND: Longxuetongluo capsule (LTC), derived from the total phenolic compounds of Chinese dragon's blood, is now used in the treatment of ischemic stroke in convalescence. The aim of this study is to explore the neuroprotective effect of LTC from the perspective of neuroinflammation. METHODS: Cell viability and lactate dehydrogenase (LDH) release were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and LDH assay kit. Proinflammatory mediators and cytokines production including Nitric Oxide (NO), prostaglandin E2, (PGE2), interleukin (IL-ß), IL-6, and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA) assay. In addition, western blot was used to detect the expression of inflammatory proteins associated with the mitogen-activated protein kinases (MAPKs), janus kinase/signal transducer and activator of tranions (JAK/STAT), nuclear transcription factor κB (NF-κB), and nuclear factor erythroid-2-related actor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathways. Moreover, immunofluorescence assay and electrophoretic mobility shift assays (EMSA) were performed to determine the Nrf2 translocation and the binding-DNA activity of NF-κB, respectively. RESULTS: LTC at 0.5 to 2 µg/mL significantly increased cell viability and decreased LDH, NO, PGE2, IL-1ß, IL-6, and TNF-α production in oxygen-glucose deprivation/reoxygenation (OGD/R) and lipopolysaccharide (LPS)-induced BV2 microglia cells. Meanwhile, LTC not only decreased the protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) but also down-regulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and up-regulated HO-1 expression via nuclear translocation of Nrf2. LTC can significantly inhibit the phosphorylation of JAK1/STAT3 and reduce the translocation of NF-κB from cytosol to nucleus as well as the binding-DNA activity. PC12 cell pretreated with LTC-condition medium (CM) significantly alleviated LPS-induced neurotoxicity and increased PC12 cell viability in a dose-dependent manner. CONCLUSION: The present study showed that LTC exhibited a strong antineuroinflammatory activity and neuroprotective effects on LPS-stimulated BV2 microglial cells and PC12 cells.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Dinoprostona/biosíntesis , Medicamentos Herbarios Chinos/análisis , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA